Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 27(10)2022 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-35630573

RESUMO

The house fly Musca domestica L. is one of the medical and veterinary pests that can develop resistance to different insecticides. Mixing insecticides is a new strategy for accelerating pest control; furthermore, it can overcome insect resistance to insecticides. This study aims to evaluate three insecticides, chlorfenapyr, abamectin, and lambda-cyhalothrin, individually and their binary mixtures against 2nd instar larvae of M. domestica laboratory strain. Chlorfenapyr exhibited the most toxic effect on larvae, followed by abamectin then the lambda-cyhalothrin. The half-lethal concentrations (LC50) values were 3.65, 30.6, and 94.89 ppm, respectively. These results revealed that the high potentiation effect was the mixture of abamectin/chlorfenapyr in all the mixing ratios. In contrast, the tested combination of lambda-cyhalothrin/abamectin showed an antagonism effect at all mixing ratios against house fly larvae. The total protein, esterases, glutathione-S-transferase (GST), and cytochrome P-450 activity were also measured in the current investigation in the larvae treated with chlorfenapyr. Our results indicate that GST may play a role in detoxifying chlorfenapyr in M. domestica larvae. The highest activity of glutathione-S-transferase was achieved in treated larvae with chlorfenapyr, and an increase in cytochrome P-450 activity in the larvae was observed post-treatment with Abamectin/chlorfenapyr.


Assuntos
Moscas Domésticas , Inseticidas , Animais , Sistema Enzimático do Citocromo P-450 , Glutationa , Resistência a Inseticidas , Inseticidas/farmacologia , Ivermectina/análogos & derivados , Larva , Nitrilas , Piretrinas , Transferases
2.
PLoS One ; 17(3): e0264035, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35255107

RESUMO

Alternatives of conventional antibiotics have become an urgent need to control drug-resistant bacteria. Therefore, search for new antibacterial agents has become a trend in several microbiological and pharmaceutical scientific works. Insects, one of the most successful and evolved species on earth is known to be an effective natural source of several medically useful chemicals including antibacterial agents. There is considerable evidence of using wasp venom against medical ailments in several parts of the world. In this work venom from Polistes wattii Cameron, 1900 collected from Eastern Province, Saudi Arabia was evaluated for its antibacterial activities. Such activity was tested against four pathogenic bacteria: two-gram positive Staphylococcus aureus (ATCC 25923) and Streptococcus mutans (RCMB 017(1) ATCC 25175) and two gram-negative (Salmonella typhimurium NCTC 12023 ATCC 14028 and Enterobacter cloacae (RCMB 001(1) ATCC 23355). Also, chemical characterization of wasp venom was done using HPLC and two isolated peptides were sequenced. The result indicates the potent anti-microbial effect of the venom against the four tested bacteria. The most sensitive bacteria were Staphylococcus aureus (ATCC 25923) and Streptococcus mutans (RCMB 017(1) ATCC 25175). The sequence of the two purified peptides indicates that they belong to mastoparan. The study results may pave way to use this wasp venom in future antibiotics especially in controlling skin infection by Staphylococcus aureus.


Assuntos
Infecções Estafilocócicas , Vespas , Animais , Antibacterianos/farmacologia , Bactérias , Testes de Sensibilidade Microbiana , Peptídeos/farmacologia , Arábia Saudita , Staphylococcus aureus , Venenos de Vespas/química , Venenos de Vespas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...